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ABSTRACT: Ensemble forecasts are generated with and without the assimilation of near-surface observations from a

portable, mesoscale network of StickNet platforms during the Verification of the Origins of Rotation in Tornadoes

Experiment–Southeast (VORTEX-SE). FourVORTEX-SE intensive observing periods are selected to evaluate the impact

of StickNet observations on forecasts and predictability of deep convection within the Southeast United States. StickNet

observations are assimilated with an experimental version of the High-Resolution Rapid Refresh Ensemble (HRRRE) in

one experiment, and withheld in a control forecast experiment. Overall, StickNet observations are found to effectively

reduce mesoscale analysis and forecast errors of temperature and dewpoint. Differences in ensemble analyses between the

two parallel experiments are maximized near the StickNet array and then either propagate away with the mean low-level

flow through the forecast period or remain quasi-stationary, reducing local analysis biases. Forecast errors of temperature

and dewpoint exhibit periods of improvement and degradation relative to the control forecast, and error increases are

largely driven on the storm scale. Convection predictability, measured through subjective evaluation and objective verifi-

cation of forecast updraft helicity, is driven more by when forecasts are initialized (i.e., more data assimilation cycles with

conventional observations) rather than the inclusion of StickNet observations in data assimilation. It is hypothesized that

the full impact of assimilating these data is not realized in part due to poor sampling of forecast sensitive regions by the

StickNet platforms, as identified through ensemble sensitivity analysis.

SIGNIFICANCE STATEMENT: In this work, observations from a portable observation network during a large-scale

field campaign are incorporated into numerical weather prediction models to improve forecasts of severe storms and

their attendant hazards: tornadoes, hail, and severe wind. Observations are gathered from StickNet platforms (devel-

oped at Texas Tech University), which were placed throughout northern Alabama and southern Tennessee during the

project. Over four cases examined in this manuscript, simulations that include StickNet observations are improved at

earlier times, but forecast impacts at later times are varied. The observations improve near-surface temperature and

moisture forecasts, but do not routinely influence forecasts of the actual storms, likely because themost sensitive regions

that would improve forecasts were not well sampled by the StickNets. Future work should evaluate how more frequent

observations could improve forecasts, beyond what was considered here (i.e., one observation per hour).

KEYWORDS: Severe storms; Ensembles; Numerical weather prediction/forecasting; Operational forecasting; Data

assimilation

1. Introduction

The spatial climatology of severe storm hazards and their

corresponding environments across the United States gener-

ally focuses within the Great Plains and Southeast United

States (e.g., Horgan et al. 2007; Guyer and Dean 2010; Dixon

et al. 2011; Gensini and Ashley 2011; Cintineo et al. 2012;

Gensini et al. 2020). Whereas particular attention has been

given to severe thunderstorms across the Great Plains over the

last few decades through various large-scale field programs,

including the Verification of the Origins of Rotation in

Tornadoes Experiment (VORTEX; Rasmussen et al. 1994),

VORTEX2 (Wurman et al. 2012), theMesoscale Predictability

Experiment (Weisman et al. 2015), and the Plains Elevated

Convection At Night project (Geerts et al. 2017), less attention

has been provided to the Southeast thunderstorm environ-

ment. The lack of attention is particularly noteworthy since the

Southeast is prone to more frequent and less predictable high-

shear, low-CAPE (HSLC) environments preceding severe

weather events (Davis and Parker 2014; Sherburn and Parker

2014; Sherburn et al. 2016; King et al. 2017), a disproportionate

frequency of nocturnal storms (Ashley 2007; Kis and Straka

2010) and long-track tornadoes (Dixon et al. 2011), forested

areas that hinder line-of-sight (Ashley 2007), complicated

storm modes (e.g., Smith et al. 2012), an ill-defined ‘‘storm

season’’ (e.g., Smith et al. 2012), and population vulnerabil-

ities (e.g., mobile homes, poverty, and elderly populations;
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Ashley 2007; Wallace et al. 2015; Childs et al. 2018). Furthermore,

recent work has hinted at the possibility that severe thunder-

stormhazards have becomemore frequent across theMississippi

River Valley and Southeast United States over the last two

decades (Gensini et al. 2020), which suggests improving severe

storm hazard forecasts in these regions could be extremely

beneficial, greatly reducing the impacts storms and their at-

tendant hazards have on the population and society.

Recently, VORTEX-Southeast (VORTEX-SE) was birthed

to improve the understanding of physical processes that con-

tribute to an enhanced risk of severe thunderstorms and

associated hazards (e.g., Smith et al. 2012) in the Southeast

United States, as well as human behavior that may explain

the relatively higher mortality due to severe hazards in this

region (e.g., Ashley 2007). A number of meteorological observing

assets—e.g., mobile Doppler radars, rawinsondes, instrumented

towers, and profilers (e.g., Lee et al. 2019; Markowski et al. 2019;

Tanamachi et al. 2019; Lyza et al. 2020)—were deployed during

field campaigns in the springs (March and April) of 2016 and

2017, as well as during the cold seasons (November–April) of

2018 and 2019, to address the project’s physical science ob-

jectives. In support of VORTEX-SE, a fleet of portable, near-

surface in situ sampling platforms—StickNets (Schroeder and

Weiss 2008; Weiss and Schroeder 2008)—was deployed by

Texas Tech University to sample near-storm environmental

heterogenieties (e.g., McDonald and Weiss 2021) and supple-

ment the existing observational network in northern Alabama

and southern Tennessee. Whereas StickNet applications in

rapid-deployment scenarios have been well documented—

primarily sampling supercell cold pools and outflow wind gusts

(e.g., Skinner et al. 2011, 2014; Weiss et al. 2015; Gunter et al.

2017)—their utility as a portable, quickly deployed, and stationary

near-surface sampling network for severe storm environments is

relatively new. The placement of a dense, high-frequency in situ

observation network during VORTEX-SE, sampling a relatively

data-sparse region, provides a unique and valuable dataset to

investigate forecast improvements of severe storms and their

hazards in the Southeastern United States. Near-surface obser-

vations have immense value for convection forecasts, demon-

strated by a number of studies (e.g., Sobash and Stensrud 2015;

Chen et al. 2016; Madaus and Hakim 2017), and it is hypothe-

sized that the portable StickNet fleet provided significant value

to forecasts of severe hazards during VORTEX-SE. This paper

will document and investigate StickNet-observation impacts

on severe storm forecasts during VORTEX-SE, and quantify

forecast changes when observations are assimilated with a

numerical weather prediction model.

To properly evaluate these impacts, explicit simulations of

deep convection and associated hazards (e.g., tornadoes, hail,

and wind) are needed, necessitating the use of convection-

allowing models (CAMs). CAMs utilize small horizontal grid

spacing to explicitly simulate convective processes (Bryan et al.

2003). The last decade has seen a proliferation of CAMs, re-

sulting in markedly improved forecasts of severe hazards

across theUnited States (e.g., Done et al. 2004; Kain et al. 2006;

Clark et al. 2010). Additionally, coupling CAMs with sophis-

ticated data assimilation techniques has yielded improved

representation of the near-storm environment, improving the

subsequent forecasts of severe hazards (e.g., Stensrud et al.

2013). Generally, in situ observations have been found to

contribute to this improvement through a more accurate rep-

resentation of the mesoscale environment (e.g., Stensrud et al.

2009; Wheatley and Stensrud 2010; Wheatley et al. 2012;

Knopfmeier and Stensrud 2013; Ha and Snyder 2014; Torn

2014; Coniglio et al. 2016; Hitchcock et al. 2016), motivating

the incorporation of StickNet observations with a CAM in

this study.

The advent of ensemble prediction systems (EPSs) at convection-

allowing resolutions has further improved forecast skill of deep

convection and associated hazards (e.g., Clark et al. 2009; Kain

et al. 2013; Schwartz et al. 2015; Wheatley et al. 2015; Jones

et al. 2016; Sobash et al. 2016b). Whereas deterministic CAM

solutions provide only one snapshot of a future atmospheric

state, EPSs of sufficient size provide a representative measure

of forecast uncertainty, which can be extremely valuable to

real-time forecasters and a statistical tool for researchers to

assess the relative predictability of a particular event (e.g.,

Nielsen and Schumacher 2016) or series of events. As com-

puting power and capability have increased over the past few

decades, real-time convection-allowing ensembles (CAEs)

have been developed at universities (e.g., Manser and Ancell

2020), research centers (e.g., Xue et al. 2007; Schwartz et al.

2015), and operational weather centers (e.g., Hagelin et al.

2017; Jirak et al. 2018; Klasa et al. 2018), producing skillful

forecasts of high-impact weather including severe thunder-

storms (Jirak et al. 2012; Roberts et al. 2020). Research at

NOAA’s Global System Laboratory has focused on develop-

ing data-assimilation and forecasting capabilities with a single-

model CAE system, based on the High-Resolution Rapid

Refresh (HRRR)modeling infrastructure (Alexander et al. 2016;

Dowell et al. 2021, manuscript submitted to Wea. Forecasting),

referred to as theHRRRensemble (HRRRE;Dowell et al. 2021,

manuscript submitted to Wea. Forecasting).

For the purposes of this work, theHRRREwill be utilized to

demonstrate how the portable StickNet array of near-surface

observations can improve forecasts of severe storms in the

Southeast United States, while simultaneously informing best

practices for future development of an operational CAE. The

rest of the paper is laid out as follows: the StickNet platforms,

modeling system, and analysis methods to quantify forecast

improvements are detailed in section 2; ensemble analyses and

forecasts from each case are subjectively and objectively as-

sessed in section 3; and discussion on forecast sensitivity is

reserved for section 4. A summary and discussion of the results

is presented in section 5, along with implications for future

VORTEX-SE project deployments.

2. Methods

a. StesoNet

During the 2016 and 2017 spring field phases of VORTEX-

SE, 16 StickNet (e.g., Fig. 1) platforms were positioned with

40-km spacing across southern Tennessee and northernAlabama

(Fig. 2)—hereafter, referred to as the ‘‘StesoNet’’—in an effort to

sample thunderstormcold pool properties aswell as themesoscale
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environment preceding these storms. The remaining eight

platforms of the StickNet fleet were used for rapid deploy-

ments in advance of targeted storms. During the 2018–19

campaign (Meso18–19), the eight rapid-deployment StickNets

were inserted into the stationary network to extend coverage

southward toward central Alabama and improve sampling

resolution in the central portion of the domain.

Each StickNet probe is equipped to measure pressure, wind

speed and direction, temperature, and relative humidity at

10-Hz sampling frequency, approximately 1.5m above the

surface. The computing hardware and pressure sensor are

mounted inside a Campbell Scientific data acquisition box

with a small battery for ,12-h deployments. An external bat-

tery box can also be deployed that extends the StickNet’s

sampling lifetime to .24 h (typically less than 5 days), which

has been advantageous for prolonged deployments during

landfalling hurricanes (e.g., Zachry et al. 2013; Giammanco

et al. 2016; Alford et al. 2019; Fernández-Cabán et al. 2019).

During VORTEX-SE, a 100-W solar panel was attached to

each probe (see Fig. 1) in an effort to provide continuous

FIG. 1. An example deployment of a StesoNet station with accompanying instruments, data

acquisition system, batteries, and solar panel labeled.

FIG. 2. (a) StesoNet domain and station locations over the red box region in (b). Stations denoted in black were consistent locations

across all field campaigns, and those in magenta were inset duringMeso18–19, as discussed in the text. Gray lines denote rivers in the area

and state boundaries, and are provided for reference. (b) Model domains of the HRRRE prediction system across the contiguous United

States and model terrain (m; filled contours). The red box approximates the location of the StesoNet domain in the HRRRE system.
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power to the StesoNet array and allow uninterrupted sampling

of multiple convective events across each season of sampling.

Specific details regarding instrument characteristics are pro-

vided by Skinner et al. (2011).

Biases for all StickNet probes were determined prior to and

after field campaigns through mass tests, in which all probes

were deployed in close proximity in an open area for multiple

days. An arithmetic average was then taken over all probe

observations during a selected period (e.g., clear diurnal pat-

tern) to assess the bias characteristics for each instrument (i.e.,

temperature, pressure, and relative humidity) on each probe.

Mass tests were conducted on either end of the observing

periods to determine if any biases changed during transport,

deployment, or during the sampling periods. The raw obser-

vations from each StickNet platform obtained during the field

project were then corrected based on their respective biases

determined through the mass tests (to the nearest 0.5K, 0.5 hPa,

and 0.5% for temperature, pressure, and relative humidity

observations, respectively). When biases appeared to change

drastically between predeployment and postdeployment mass

tests, the mass-test biases were averaged together and again

rounded. These bias-corrected observations are provided to

the ensemble modeling system for data assimilation, which has

an additional quality control procedure described in the fol-

lowing subsection, so no subjective or objective quality control

is conducted to remove erroneous StesoNet observations.

b. Modeling configuration and StickNet assimilation

In an effort to improve forecasts of deep convection and

severe hazards across the contiguous United States (CONUS),

the NOAA’s Global Systems Laboratory has been developing

convection-allowing, ensemble-based data-assimilation and

forecasting methods with the HRRRE. This modeling system

effectively extends the capabilities of the HRRR operational

model to an ensemble framework. HRRRE forecasts are made

with WRF-ARW version 3.9 on one-way nested domains with

15- and 3-km grid spacing (Fig. 2) and 36 ensemble members.

The 3-km grid spacing of the full-CONUS inner domain allows

for explicit simulation of deep, moist convection (Bryan et al.

2003). Observations are assimilated hourly into the 36-member

ensemble with the Gridpoint Statistical Interpolation (GSI)

ensemble Kalman filter (EnKF; Evensen 1994) software.

During select VORTEX-SE intensive observing periods

(IOPs) analyzed in this work, the HRRRE system is ini-

tialized at 0900 UTC the day of an event. The initial atmo-

spheric ensemble-mean state comes from the 0900 UTC

Rapid Refresh (RAP) model analysis, interpolated to the

15- and 3-km HRRRE grids (Dowell et al. 2021 manuscript

submitted to Wea. Forecasting). The 36 HRRRE atmospheric

initial conditions are produced by adding perturbations from

the first 36 members of a 9-h forecast from the NOAA Global

DataAssimilation System (GDAS) to the ensemblemean. The

land surface state in all 36 members is initialized from the

0900 UTC HRRR analysis, without perturbations. Boundary

conditions come from a Global Forecast System (GFS) forecast,

and random perturbations are added to the boundary conditions

for each ensemble member. The 15-km outer HRRRE grid

exists so that these random perturbations can evolve into more

physically consistent perturbations before reaching the inner

3-km grid.

To forecast an IOP event, data assimilation is performed

hourly with the GSI-EnKF beginning at 1000 UTC and ending

at 1800 UTC on both domains, which was sufficient to provide

ensemble initial conditions covering the periods of interest.

Ensemble member backgrounds come from 1-h forecasts propa-

gated from the previous analysis; the first ensemble member

backgrounds are 1-h forecasts generated from the perturbed

initial states created from the RAP and GDAS described

earlier. Conventional observations, such as those from METAR,

aircraft, radiosondes, and buoys, are assimilated on both domains,

and radar reflectivity from the WSR-88D network is included

during assimilation on the 3-km inner domain. Assimilated

observations update the model state variables of horizontal

wind, temperature, water vapor, and hydrometeor mixing ratios

(i.e., cloud water, rain, snow, and graupel). A Gaspari–Cohn

localization function (Gaspari and Cohn 1999) is employed to

limit observation impacts on state-variable covariances during

assimilation. Conventional observations have horizontal and

vertical localization radii of 300 km and 0.5 scale height, re-

spectively, which denotes when observation weights reduce to

zero. Horizontal and vertical localization radii of 18 km and

0.5 scale height, respectively, are applied to radar observations.

Every hour, each member is checked for erroneous clouds that

might have developed where satellite observations indicate

clear conditions; erroneous clouds are removed by resetting

cloud water and cloud ice to zero throughout the column and

reducing the relative humidity to 85% at any locations where

clouds were removed (Dowell et al. 2021, manuscript submit-

ted to Wea. Forecasting). While ensemble spread is initially

generated via random perturbations, it is maintained through a

relaxation-to-prior-spread technique after assimilation each

hour (Whitaker and Hamill 2012). Stochastic methods for

increasing ensemble spread were not included in HRRRE

for the current study, thus simplifying interpretations about

how forecast perturbations are related to initial-condition

perturbations.

At select times during an IOP (e.g., 1200, 1500, and 1800UTC),

ensemble analyses are used to generate 36-member forecasts

that encompass the convective event. The aforementioned data

assimilation cycling and ensemble forecast procedure serves as

the control system (CTRL) for evaluation of forecast skill

improvement. A parallel forecast system (EXP) is generated

that assimilates the aforementioned observations along with

bias-corrected, 1-min averaged StesoNet observations of tem-

perature, pressure, and specific humidity at the top of each hour

(1000–1800 UTC) from each station; 16 and 24 stations are in-

cluded in data assimilation cycles for the 2017 and Meso18–19

IOPs, respectively, as long as each station was operating. Wind

speed and direction are omitted from assimilation due to

sampling biases reflective of topography and vegetation im-

pacts on the 2-m above ground level kinematic observations.

The StickNet relative humidity observations are converted to

specific humidity for the GDAS assimilation. Only one observa-

tion of temperature, pressure, and humidity is used from each

StickNet station during each assimilation cycle valid at the

assimilation time. GDAS will reject a particular observation if
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it falls outside of three standard deviations of the background

ensemble distribution, which effectively eliminates missing

data points and disregards heavily biased observations, re-

gardless of source (i.e., StesoNet or METAR). Forecasts are

generated from the EXP analyses and then compared to

CTRL forecasts initialized at the same time.

c. Analysis methods

To evaluate changes in forecast skill due to StesoNet ob-

servation assimilation, subjective and objective analyses are

employed on the ensemble analyses and forecasts of environ-

mental and storm-specific variables (e.g., 2-m temperature and

updraft helicity) from the CTRL and EXP ensemble systems.

The analysis fit to observations (hereafter referred to as anal-

ysis error) is determined for both EXP and CTRL analyses of

temperature and dewpoint by calculating absolute errors (AE)

at individual observing sites, which includes the regular auto-

matic surface observing system (ASOS) station network and

StesoNet array. Changes in absolute error (DAEi) from the

CTRL to EXP simulation at a particular observing location

are represented as the CTRL simulation AE (AEi,CTRL) sub-

tracted from the EXP simulation AE (AEi,EXP):

DAE
i
5AE

i,EXP
2AE

i,CTRL
5 j(FEXP

i 2O
i
)j2 j(FCTRL

i 2O
i
)j ,
(1)

where Fi is the forecast magnitude with respect to the EXP and

CTRL simulations (FEXP
i and FCTRL

i , respectively) andOi is the

observation at a station i. Forecast and analysis errors of both

simulations are assessed through domainwide (338–368N and

838–908W) root-mean-squared error (RMSE) statistics com-

puted against the full near-surface observation dataset (i.e.,

including the StesoNet array). RMSE statistics are calculated

using the following formula:

RMSE5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

M
�
M

i51

(F
i
2O

i
)2

s
, (2)

where M represents all stations considered in the domain.

Through this quantitative analysis, the spatial and temporal

characteristics of analysis and forecast errors across the two

prediction systems can be assessed to determine the relative

value of StesoNet observations in improving analyses and

subsequent forecasts.

Additionally, forecast differences of storm-centric variables

are quantified through probabilistic verification techniques.

Specifically, ensemble forecast probabilities of 1–6-km updraft

helicity (UH) exceeding a threshold are verified against local

storm reports (LSRs) of severe hail, wind, and tornadoes via

the Brier score to assess if any adjustments are made to UH

from StesoNet observations that improve localized prediction

of severe storm hazards. Similar methods have been employed

for deterministic and ensemble CAM forecasts, which have

demonstrated the relationship of UH in simulated thunder-

storms and severe weather reports (e.g., Gallus et al. 2008;

Clark et al. 2012, 2013; Sobash et al. 2011, 2016a,b). Brier

scores will decrease (i.e., skill increases) in areas where fore-

cast probabilities increase, coincident with a LSR. However,

Brier scores do not capture the underlying skill of CTRL,

which may be sufficient given the relative density of LSRs and

CTRL forecast probabilities. Moreover, the limited number of

cases explored in this work hinders a more robust assessment

of forecast skill, thus Brier scores should be considered just one

method to explore forecast skill.

Forecast probabilities are assembled via the neighborhood

maximum ensemble probability (NMEP) method (Schwartz

and Sobash 2017), whereby member forecasts of hourly max-

imum UH are filtered spatially (78 km 3 78 km box) for UH

exceeding 50m2 s22 and each forecast is converted to a binary

yes/no UH-exceedance field on the native HRRRE domain.

The resulting ensemble is then averaged and the ensemblemean

field is smoothed using a Gaussian kernel with a smoothing

length scale of 39 km (i.e., 13 grid points). Archived LSRs are

obtained from Iowa State University’s Iowa Environmental

Mesonet (IEM) geographical information system archive (https://

mesonet.agron.iastate.edu/request/gis/) and gridded such that all

grid points within 40km of an LSR are given a binary magnitude

of 1. Brier scores are calculated in objectively defined regions

defined by the gridded LSRs and NMEP-based ensemble

forecast probabilities greater than 5% (approximately two

ensemble members) from either forecast simulation. In this

way, the Brier score calculations are restricted to only portions

of the analysis domain where hazards were reported or the

ensemble systems predicted UH, and the vast portions of the

domain where no storms occurred do not bias the Brier scores.

The predictability of each event is also assessed by comparing

the overall skill of CTRL forecasts initialized at two lead times

prior to the convective event (e.g., 1200 and 1800 UTC ini-

tialized forecasts) to forecasts made by the EXP system; the

1500 UTC initialized forecasts are omitted in this evaluation.

The forecasts are evaluated subjectively as well in an effort to

describe how StesoNet observations augment the UH forecast

probabilities.

Additionally, objective measures of predictability are employed

through the application of ensemble sensitivity analysis (ESA;

Ancell and Hakim 2007; Hakim and Torn 2008; Torn and

Hakim 2008). ESA is a regression tool that takes a vector of

scalar forecast metric values within a specified region (e.g.,

composite reflectivity) and regresses these estimates back to

earlier model states to estimate how small changes in the initial

conditions will influence the forecast. ESA has been used

extensively at synoptic scales (e.g., Torn and Hakim 2009;

Garcies and Homar 2009, 2010; Torn 2010; Chang et al. 2013;

McMurdie and Ancell 2014; Torn and Cook 2013; Zheng et al.

2013; Xie et al. 2013; Brown andHakim 2015; Ancell 2016) and

has become increasingly popular for convective applications

(e.g., Bednarczyk and Ancell 2015; Torn and Romine 2015;

Hill et al. 2016; Berman et al. 2017; Torn et al. 2017; Hill et al.

2020). In this work, ESA-based observation targeting methods

(e.g., Ancell and Hakim 2007; Hill et al. 2020) are applied to

assess where hypothetical temperature and moisture observa-

tions would contribute to reducing CTRL forecast metric

variance later in the forecast, and these objectively defined

regions are compared to where the StesoNet sampled during

convective events. The ESA-based targeting formula for UH

forecast variance change (ds2
i,UH) is defined by
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FIG. 3. Ensemble mean analysis differences calculated as EXP–CTRL of (left) 2-m temperature and (right) 2-m

dewpoint temperature (K, shaded) at (a),(b) 1200; (c),(d) 1400; (e),(f) 1600; and (g),(h) 1800 UTC, respectively, for

the 22 Apr case. Colored dots represent the change in ensemble mean absolute error (K) between EXP and CTRL

at surface observing stations, with negative values indicating a reduction in error in the EXP analysis and positive

values an increase in error. The average change in absolute error at an analysis time across the mapped domain is

denoted in the lower-right corner. Circles with bolded outlines depict StesoNet observing sites.
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i
)
2 1s2
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where the numerator in (3) represents the covariance between

a state variable (e.g., 2-m temperature) vector xi,n at grid point i

and forecast metric vector Rn across all N ensemble members,

and the denominator is a summation of the variance in x and a

hypothetical observation variance (s2
ob), typically defined by

instrument error characteristics; the observation variance is set

to 1K for both temperature and dewpoint hereafter.

For the ESA, UH is used as the forecast metric and the

forecast region used to calculate ensemble estimates is ob-

jectively selected based on UH ensemble variance. UH is

particularly useful as a forecast metric since it is generally

regarded as a good predictor of strong rotating updrafts and

various severe hazards (e.g., Sobash et al. 2011). Following

Torn and Romine (2015), the forecast metric region is de-

termined by considering all grid points that equal or exceed

60% of the maximumUH standard deviation over a period of

interest that represents large ensemble variability; the ob-

jective procedure is described below. This objective region-

selection procedure eliminates subjectivity and focuses the

ensemble sensitivity analysis on where the forecast is most

uncertain, and has been shown to work well for convective

regimes (e.g., Torn and Romine 2015; Berman et al. 2017;

Torn et al. 2017).

The maximum UH of each ensemble member forecast

across a 3-h time window is smoothed spatially with a Gaussian

kernel and a spatial length scale of 42 km. Ensemble standard

deviation is calculated from the smoothed UH member fields

and a region is demarcated where the standard deviation

exceeds 60% of the maximum standard deviation; this is the

response region. The response vectorR for ESA calculations is

the mean 3-h maximum UH over the response region of each

ensemble member’s forecast. Torn et al. (2017) noted in their

study that the sensitivity signals were relatively insensitive to

the time window and manner of smoothing for the response

variable, which may have altered the size of the response

region. The ESA-based observation targeting regions are

calculated with respect to hypothetical 2-m temperature

and dewpoint observations. The ESA predictability anal-

ysis identifies target regions within the CTRL forecast

system that are deemed critical to forecast error growth.

Combined with the knowledge of the StesoNet domain, the

target regions can be evaluated to determine potential

reasons why EXP forecasts are improved or degraded, and

in particular, if the StesoNet domain happened to sample a

sensitive forecast region that propagated through the sta-

tionary network.

3. Case analysis

Three years of VORTEX-SE field campaigns featured 18

numbered IOPs, with multiple sampling strategies occurring

for single IOPs (e.g., IOP 4a, 4b, 4c, and 4d spanning four

nearly consecutive days) covering 27 total days. The 27 cases

were filtered first by the StesoNet operating and second for

severe weather reports of all or most hazard types occurring

within the StesoNet domain, reducing sample size to nine

events. With a limited number of severe weather events across

VORTEX-SE field campaigns, these nine cases were assessed

subjectively based on perceived aspects of predictability, the

presence of storm reports across the StesoNet domain, and a

desire to simulate a variety of convectivemodes.As a result of this

TABLE 1. Root-mean-squared error differences between CTRL and EXP ensemble analyses of 2-m temperature from 1000 to

1800 UTC for each case calculated across 338–368N and 838–908W. Bolded differences are statistically significant at the 95% confidence

level using bootstrapping with 1000 resamples of each analysis’s sample error distribution. Negative values represent lower errors in

EXP simulations.

Hour (UTC)

Cases 10 11 12 13 14 15 16 17 18

22 Apr 20.03 20.05 20.05 20.05 20.03 20.02 20.05 0.01 20.08

30 Apr 20.02 20.03 20.02 20.02 20.03 20.03 20.03 20.13 20.33

23 Feb 0.01 20.05 20.11 20.13 20.19 20.18 20.15 20.05 0.0

14 Mar 20.03 20.04 20.08 20.08 20.08 20.07 20.05 20.07 0.01

TABLE 2. Root-mean-squared error differences betweenCTRL and EXP ensemble analyses of 2-m dewpoint temperature from 1000 to

1800 UTC for each case calculated across 338–368N and 838–908W. Bolded differences are statistically significant at the 95% confidence

level using bootstrapping with 1000 resamples of each analysis’s sample error distribution. Negative values represent lower errors in EXP

simulations.

Hour (UTC)

Cases 10 11 12 13 14 15 16 17 18

22 Apr 0.01 20.06 20.04 20.05 20.03 20.06 20.1 20.05 20.2

30 Apr 0.02 0.01 20.03 20.11 20.14 20.07 0.06 20.12 20.07

23 Feb 20.01 20.01 20.12 20.16 20.23 20.15 20.05 20.02 0.05

14 Mar 0.0 20.03 0.01 0.02 20.01 0.0 20.1 20.12 20.1
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assessment, four retrospective cases are evaluated herein—two

each from the 2017 and Meso18–19 field programs—in which

StesoNet observations are included and withheld from data

assimilation with the HRRRE. Three events are associated

with severe weather reports beginning on 22 April 2017,

30 April 2017, and 23 February 2019, and a fourth event, which

was not declared an IOP, on 14March 2019. Both an objective

and subjective evaluation is incurred to assess forecast

improvement or degradation from assimilating StesoNet

observations and their role in augmenting predictability of

these severe weather events.

a. Near-surface errors

Averaged RMSE is calculated across the domain (e.g.,

Fig. 3) for the CTRL and EXP ensemble analyses. Analyses

are generated through hourly data assimilation from 1000 to

FIG. 4. As in Fig. 3, but for the 30 Apr case.
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1800 UTC for each case and the resulting CTRL RMSE is

subtracted from the EXP RMSE for temperature (Table 1)

and dewpoint (Table 2). Across all analyses and cases, RMSE

differences are smaller than 0.5 K for both temperature and

dewpoint. However, RMSE differences for a number of

assimilation cycles, while small, are statistically significant

(bolded magnitudes in Tables 1 and 2). Analysis temperature

RMSE is consistently reduced the most in the 23 February and

14 March cases, while analysis dewpoint RMSE is reduced

most significantly in the 23 February and 30 April cases. Both

the 23 February and 14 March cases exhibit more frequent

cycles where the RMSE differences are statistically significant

(e.g., from 1000 to 1700UTC 14March, Table 1) than the other

two cases.

FIG. 5. As in Fig. 3, but for the 23 Feb case. Magenta bolded circle outlines depict the additional eight StesoNet

observing sites in Meso18–19, as discussed in the text.
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The spatial distribution of analysis errors as well as analysis

differences (EXP–CTRL) are examined through dot plots at

select analysis times (Figs. 3–6). StesoNet observations are able

to adequately adjust the ensemble analyses toward the obser-

vations (blue dots in e.g., Figs. 3a, 4d, 5c, 6a), with minimal

instances of error increases (red dots in e.g., Fig. 6b), particu-

larly at early analysis cycles. Large swaths of ensemble mean

temperature and dewpoint analysis changes are collocated with

the StesoNet domain, indicating StesoNet observation as-

similation is adjusting the mesoscale environment (e.g.,

Figs. 3a,b,h, 4c,d, 5a–d). The StesoNet observations are cor-

recting underpredicted temperature (Figs. 4c, 6a) and dewpoint

(Fig. 3h) as well as overpredicted ensemble mean temperature

(Figs. 3a, 5a,c) and dewpoint (Figs. 3b, 4d, 5b,d).At later analysis

FIG. 6. As in Fig. 3, but for the 14 Mar case. Magenta bolded circle outlines depict the additional eight StesoNet

observing sites in Meso18–19, as discussed in the text.
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times, however, the combined effects of multiple assimilation

cycles and developing convection contribute to more frequent

small-scale analysis errors between the CTRL and EXP sim-

ulations (e.g., Figs. 4e–h, 5e–h, 6g,h); the StesoNet is not able to

correct small-scale errors due to, for example, developing cold

pools. For example, two StesoNet locations and one non-

StesoNet location in northern Alabama at 1800 UTC 30 April

(red rectangle in Fig. 4g) have lower temperature errors within

an advancing cold pool due to StesoNet assimilation, while the

same stations have both increases and decreases in dewpoint

errors at the same time (red rectangle in Fig. 4h). In some

instances, small-scale errors are present at early analysis cycles

as well (red rectangles in Figs. 3b,d and 6c,d), which may be

more indicative of poor representation of the near-surface and

boundary layer environment in the ensemble simulations be-

fore daytime heating commences and the boundary layer

deepens.

In the 22 April case, StesoNet observations reduce analysis

dewpoint in southern Tennessee and simultaneously increase

dewpoints in north-central Alabama (Fig. 3b). At 1400, 1600,

and 1800 UTC, the dewpoint increase is more robust across

northern Alabama, and it remains quasi-stationary (Figs. 3d,f,h).

FIG. 7. Domainwide ensemble mean analysis and forecast RMSE differences (EXP-CTRL) of (left) 2-m

temperature (K) and (right) 2-m dewpoint temperature (K) for (a),(b) 22 Apr; (c),(d) 30 Apr; (e),(f) 23 Feb; and

(g),(h) 14 Mar cases calculated across 338–368N and 838–908W. Shading around each line represents a 95% confi-

dence interval obtained via bootstrapping with 1000 resamples of the paired sample error distributions from each

forecast. Stars spanning each colored line delineate when the RMSE differences between EXP and CTRL are

statistically significant.
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In this instance, the StesoNet observations appear to be

correcting a persistent low dewpoint bias in the CTRL analyses;

interestingly, the persistent adjustment in the background analysis

does not necessarily translate to improved AEs at 1400 UTC

(Fig. 3b), but does reduce errors at 1800 UTC in northwestern

Alabama (Fig. 3h). This result further suggests the assimilation

of StesoNet observations adjusts the mesoscale environment

more than small scales, which are also heavily influenced by

the local topography (Fig. 2). Similar quasi-stationary anal-

ysis adjustments are seen in the 23 February case (Figs. 5a–d),

which gradually shrink with later analysis cycles (Figs. 5e–h).

In contrast, analysis differences at 1400 UTC 30 April case

(Figs. 4c,d) propagate northward into northern Tennessee in

later assimilation cycles (Figs. 4e–h); the assimilated StesoNet

observations are having a downstream impact in future

assimilation cycles.

Select analyses at 1200, 1500, and 1800 UTC are used to

initialize ensemble free forecasts (i.e., no data assimilation

after forecast begins) for each IOP. As in the above anal-

ysis, ensemble mean forecasts of temperature and dew-

point initialized from the CTRL analysis are subtracted

from identical forecasts initialized from the EXP analyses;

the CTRL AEs are also subtracted from EXP AEs to evaluate

how forecast error changes when StesoNet observations are

assimilated. Qualitatively, the spatial distribution of forecast

errors and environment differences are complex after a few

hours of forecast integration, mainly due to convection-

induced cold pools (not shown). The domainwide RMSEs

are averaged across each forecast to provide a quantitative

assessment of StesoNet observation impacts, which largely

averages out small-scale errors (Fig. 7). Forecast RMSEs are

reduced for both 2-m temperature and 2-m dewpoint in

22April when StesoNet observations are assimilated (Figs. 7a,b)

across most forecast hours, and differences remain statistically

significant through 2300 UTC for both the 1200 and 1500 UTC

initialized forecasts. On the other hand, only the 1500 and

1800 UTC initialized forecasts for 30 April have reduced 2-m

temperature forecast errors at multiple hours between 1800

and 2300 UTC (Fig. 7c); ensemble mean dewpoint forecast

errors remain relatively unchanged in 30April, except for a few

early hours in the 1200 UTC initialized forecast (Fig. 7d). Both

temperature and dewpoint forecast errors increase beyond

1400 UTC in the 23 February case (Figs. 7e,f), even though

early forecast hours just after forecast initialization have re-

duced errors. The 14 March case features initial reductions in

2-m temperature forecast errors for 1200 and 1500 UTC fore-

cast initializations, which slowly erode later into the forecast

(Fig. 7g). In contrast, dewpoint errors increase the first few

FIG. 8. Differences between 22Apr EXP and CTRL ensemble forecast probabilities (EXP–CTRL) of 1–6-kmmaximumUHexceeding

50m2 s22 over the previous hour initialized at 1800 UTC and valid at (a)–(f) 1900, 2000, 2100, 2200, 2300, and 0000 UTC (forecast hours 1–6).

Denoted in the lower-right corner are the Brier scores for each respective forecast. Local storm reports of severe wind, hail, and tornadoes

within the last hour are denoted with blue squares, green triangles, and red circles, respectively. Storm reports are obtained from an

archive on the Iowa State University Iowa Environmental Mesonet website (https://mesonet.agron.iastate.edu/request/gis/lsrs.phtml,

accessed 28 Apr 2020).

1152 WEATHER AND FORECAST ING VOLUME 36

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 07/12/21 07:23 PM UTC

https://mesonet.agron.iastate.edu/request/gis/lsrs.phtml


forecast hours from the 1200 UTC initialized forecast, but

are primarily decreased in the 1800 UTC initialized forecast

(Fig. 7h).

b. Forecast distributions

Changes in ensemble forecast distributions ofUHare inspected

to evaluate how StesoNet observations are impacting the spatial

and temporal placement of severe storms and associated haz-

ards. Only the 1800 UTC initialized forecasts from each IOP

are considered herein for brevity. Initially in the 22 April case,

StesoNet observations contributed to reducing probabilities of

UH in northeast Mississippi at 2000 UTC where one tornado

and two instances of severe hail were reported in the previous

hour (Fig. 8b). This prominent area of reduced probability

propagated through the forecast period (Figs. 8c–f) and seemingly

missed all LSRs associated with an individual, prolonged se-

vere storm (not shown). In contrast, at 2200 and 2300 UTC

the StesoNet observations contributed to increasing fore-

cast probabilities of UH in northeast Tennessee and along

the Alabama–Tennessee border (Figs. 8d,e) which coincided

with severe hail and wind reports. Brier scores are also calcu-

lated across relevant portions of the domain where UH is

forecast by either the EXP or CTRL simulation or where LSRs

were recorded (e.g., purple outline in Fig. 8a). Brier scores

across all forecast times illustrate that CTRL and EXP forecast

skill are nearly indistinguishable, and StesoNet observations

do not appear to have a significant impact on aggregate UH

forecast skill.

The 30 April case features a number of similarities as the

22 April case regarding changes to the forecast distributions.

At 2000 UTC, LSRs were scattered across northern Alabama

and central Tennessee, coincident with areas of reduced and

enhanced probabilities, respectively, due to StesoNet assimi-

lation (Fig. 9). The area of enhanced probabilities propagates

north-northeastward through the forecast period (Figs. 9b–d)

and tracks with a pocket of continuous LSRs; capturing these

reports in the forecast distribution has some impact on Brier

scores, but the magnitude is small (0.01 skill difference).

The area of reduced UH probabilities in northern Alabama at

2000 UTC (Fig. 9a) also moves northward, as the LSRs wane

by 2200UTC(Figs. 9b,c).At later forecast hours (e.g., 0000UTC),

the assimilation of StesoNet observations drastically reduces

probabilities of severe hazards in northeast Alabama and east-

central Tennessee, where no LSRs were recorded; the StesoNet

observations helped to remove any false alarm in these areas.

These forecast improvements are also evident in the surface-

based forecast errors (Figs. 7c,d). However, increases in UH

probabilities in southern Alabama and Mississippi likely offsets

the probability decreases in Alabama and Tennessee, resulting

in minimal changes to forecast skill scores.

The 23 February case featured fewer LSRs across the

StesoNet domain, but StesoNet observation influence is felt

across much of the Southeast United States in the ensemble

forecast distributions. Two hours after forecast initialization

(2000 UTC), UH probability changes in northwest Mississippi

and southwest Tennessee highlight a shift of convection eastward,

FIG. 9. As in Fig. 8, but for the 30 Apr case at hours (a)–(f) 2000, 2100, 2200, 2300, 0000, and 0100 UTC.
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induced by the StesoNet observation assimilation (Fig. 10a).

This forecast probability dipole change propagates northeast-

ward (Fig. 10b), but only one severe wind report was recorded

in this region through the IOP (see Fig. 10c). On the other

hand, western-central Mississippi featured a number of severe

storms as well as reports (e.g., Fig. 10b). However, LSRs fre-

quently occurred in areas of both increased and reduced

forecast probabilities (e.g., Fig. 10c), indicating relatively little

skill in delineating areas with increased severe hazard threats.

The lack of skill is also manifest in nearly identical Brier scores

for CTRL and EXP across all forecast times. Additionally,

forecast probabilities increase across northern Alabama at

later forecast hours (e.g., Fig. 10e), where only a few LSRs

were recorded (Fig. 10f).

As in the other IOPs, 14 March features a number of LSRs

that collocate with areas of enhanced and reduced forecast UH

probabilities (Fig. 11). At 2000 UTC, LSRs in eastern Mississippi

and western Alabama exist in between the positive and nega-

tive probability differences (Fig. 11a), whereas an hour later

LSRs in Alabama exist primarily in areas of increased forecast

probabilities (Fig. 11b). As storms move eastward, reports

follow suit and forecast UH probabilities do not accurately

change via StesoNet data assimilation to highlight the en-

hanced risks of severe storm hazards (Fig. 11c). Increased UH

probabilities in central Alabama at 2300 UTC correspond to a

reported tornado (Fig. 11d). By 0000 and 0100 UTC, LSRs

have outpaced the forecast probabilities, suggesting storms

have moved quicker eastward than either the CTRL or EXP

ensemble forecasts suggest (Figs. 11e,f). The Brier scores at

0000 UTC demonstrate that skill suffers due to StesoNet as-

similation (0.1367–0.1498) as LSRs occur out ahead of the

convection in the EXP forecast.

c. Predictability

For each IOP, separate forecasts are initialized at 1200 and

1800 UTC in both the CTRL and EXP prediction systems

and respective forecast probabilities of UH at 2300 UTC are

compared (Figs. 12–15 ). In the 22 April case, the 1200 UTC

initialized CTRL forecast produces a subjectively poor forecast

across Mississippi, Alabama, and Tennessee (Fig. 12a); fore-

cast UH probabilities were generally too far west compared to

LSRs. The inclusion of six more data assimilation cycles in

the CTRL prediction system helps to constrain the forecast

probabilities across eastern Tennessee and northern Alabama,

better aligning the highest forecast probabilities with LSRs

(Fig. 12b), and correspondingly the Brier score lowers from

0.1181 to 0.1161. The 1200 and 1800 UTC initialized EXP

forecasts at 2300 UTC are qualitatively similar to the CTRL

counterparts (cf. Figs. 12a,b to Figs. 12c,d), with a better forecast

resulting whenmore assimilation cycles are considered (Fig. 12d).

Despite the CTRL and EXP forecast similarities, the greatest

skill comes from the 1800 UTC EXP forecast initialization

(0.105 skill score).

LSRs in northern Tennessee and southern Kentucky in the

30 April case are completely missed by the 1200 UTC initial-

ized CTRL and EXP forecasts (Figs. 13a,c), resulting in similar

FIG. 10. As in Fig. 8, but for the 23 Feb case at hours (a)–(f) 2000, 2200, 0000, 0200, 0400, and 0600 UTC.
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forecast skill (Brier scores of 0.1133 and 0.1131 for CTRL and

EXP forecasts, respectively). Both forecasts erroneously place

a large swatch of probabilities in southern Mississippi and

Alabama where only one report was recorded (Figs. 13a,c).

CTRL and EXP forecasts initialized six hours later consolidate

probabilities in southern Alabama while increasing the maxi-

mum probability, and add UH probabilities in south-central

Tennessee, just south of the Tennessee wind reports (Figs. 13b,d).

The 1800 UTC initialized EXP forecast skill is improved over

the CTRL forecast (cf. 0.086–0.0938) in part due to reduced

false alarm and lower probabilities in northeast and southern

Alabama.

The distributions of forecast UH probabilities in the

23 February case are again more similar across CTRL and

EXP simulations compared to early and later-initialized

forecasts (Fig. 14). CTRL and EXP forecasts placed UH

probabilities too far west in Mississippi (Figs. 14a,c), and had

a relative probability minimum near two tornado reports in

northeast Mississippi. Additionally, both forecast simulations

issued probabilities in central Tennessee where no LSRs

were reported. The Brier score of the EXP forecast is slightly

smaller than the CTRL forecast, likely due to less erroneous

probabilities in western Tennessee and slightly lower proba-

bilities overall. The 1800 UTC initialized CTRL and EXP

forecasts have reduced skill, as the forecasts reduce probabil-

ities in MS but increase UH probabilities across Tennessee in

areas where no LSRs were reported. In fact, more LSRs were

missed by the 1800 UTC initialized CTRL and EXP forecasts

compared to those forecasts initialized 6 h prior when consid-

ering where the 5% probability contours lie.

Qualitatively, 1800 UTC initialized forecasts for the 14 March

case appear better than their 1200 UTC counterparts (cf.

Figs. 15b,d versus Figs. 15a,c), but statistically they verify

worse; Brier scores increase as a result of more assimilation

cycles. The decrease in skill is likely due to increased proba-

bilities over areas that had no LSRs, and an expansion of lower

probabilities into southern Alabama (Fig. 15b). Furthermore,

it is still apparent that the greatest forecast changes occur be-

tween forecast initializations and not the inclusion of StesoNet

observations (cf. Figs. 15a,b versus Figs. 15c,d). The inclusion

of StesoNet observations for 1200UTC initialized forecasts has

minimal impact on the forecast distribution (Fig. 15c), slightly

decreasing probabilities in southern Mississippi and northern

Tennessee. On the other hand, addingmore assimilation cycles

and running new forecasts at 1800 UTC drastically reduces the

areal coverage of forecast UH probabilities but increases the

maximum probabilities across Alabama in both the CTRL and

EXP forecasts (Figs. 15b,d).

Across the four cases, despite the inconsistent changes

to forecast skill between different forecast initializations,

the best skill came from the EXP simulations in each case.

Moreover, the intermixed small-scale forecast successes and

failures between CTRL and EXP further suggest that the

StesoNet observations cannot consistently improve small-

scale errors. On the other hand, StesoNet assimilation al-

ways contributed to better forecast skill, reducing Brier

FIG. 11. As in Fig. 9, but for the 14 Mar case.
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scores in all cases and forecasts initialized at 1200 and

1800 UTC.

4. Ensemble sensitivity analysis

As discussed previously, ESA statistically and dynamically

relates changes to a response metric (e.g., UH . 50m2 s22) to

prior model states, such that a prescribed perturbation in a

forecast variable (e.g., 2-m temperature) can be used to

estimate the change in response variance (i.e., observation

targeting). In the four IOPs examined herein, ESA-based

observation targeting fields are produced and examined to

determine where the UH forecasts are sensitive to low-level

thermodynamics.

In the 22 April case, the primary targeting regions for both

2-m temperature and dewpoint exist in central Tennessee and

southern Kentucky as much as eight hours prior to the UH

forecast response, valid at 2200 UTC (Fig. 16). These target

regions appear tied to earlier convection (gray shading in Fig. 16a)

as well as the preconvective environment for storms later in the

afternoon (e.g., Fig. 12a). ESA does identify localized regions

in northwest Alabama in conjunction with the StesoNet do-

main where dewpoint observations at early forecast times

could provide significant value toward reducing UH forecast

uncertainty later in the forecast period (Figs. 16d–f), but the

regions are temporally weakly correlated and generally small

scale. The 1800 UTC initialized forecasts, which incorporate

observations that may have sampled these sensitive regions,

are generally improved in this region of eastern Tennessee

(Fig. 12). A few pockets of target regions develop later in the

forecast period (2–4h prior to the response) in northernAlabama

andGeorgia (not shown). In contrast to the near-surface targeting

FIG. 12. Probabilistic ensemble forecasts of 1–6-km UH exceeding 50m2 s22 over the previous hour from (a),(b)

the CTRL and (c),(d) EXP ensemble systems. Forecasts are initialized at (left) 1200 UTC and (right) 1800 UTC

valid at 2300 UTC for the 22 Apr case. Local storm reports within the last hour of severe wind, hail, and tornadoes

are denoted with blue squares, green triangles, and red circles, respectively. Storm reports are obtained from an

archive on the Iowa State University Iowa Environmental Mesonet website (https://mesonet.agron.iastate.edu/

request/gis/lsrs.phtml, accessed 28 Apr 2020).
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fields, ESA identifies coherent regions for hypothetical 850-hPa

temperature observations along a northeast-southwest oriented

axis extending from central Tennessee to southwest Mississippi

(Figs. 16g–i) in advance of the afternoon convection. The 850-hPa

temperature targeting region is identified as early as 1300 UTC

(not shown) and propagates through the Southeast United

States during the full forecast period, indicating perhaps that

near-surface environment is not the most important aspect of

the forecast to sample in order to reduce UH forecast uncer-

tainty for this case.

The evolution of convection in 30 April offers a different

perspective from the 22 April case in regards to ESA identified

target regions. The majority of forecast variability exists along

the southern periphery of a QLCS in eastern Mississippi and

western Alabama at 1900 UTC (green contour in Fig. 17), and

ESA suggests the most important areas to sample 2-m tem-

perature and dewpoint are well behind the convective line at

all prior forecast times (Fig. 17). This large region is likely tied

to the cold pool produced by the QLCS, which is dynamically

related to the strength of convection. As in the 22 April case,

localized target regions exist within the StesoNet domain early

in the forecast period (Figs. 17a,b), but they are not sustained

at later hours, propagating away from the observing domain. It

is likely that improved UH forecasts along the QLCS (Fig. 13)

are a result of the conventional observational network sam-

pling the sensitive regions. ESA-identified targets of 850-hPa

temperature observations again feature coherent signals for

propagating regions out ahead of convection across Alabama

(e.g., Figs. 17g,h) and tied to the back side of the QLCS with

a well-defined region propagating from western Mississippi

at 1500 UTC (Fig. 17g) to western Tennessee by 1900 UTC

(not shown).

As in the 22 April and 30 April cases, low-level observation

targeting regions for 2-m temperature and dewpoint are rela-

tively scarce and small-scale in the 23 February case (Fig. 18).

Identified areas for targeting across the StesoNet domain are

temporally and spatially incoherent; a spatially coherent target

region in Louisiana at 1800 UTC (Fig. 18c) persists throughout

the forecast period and propagates northeastward (not shown),

but is never sampled by the StesoNet array. A variety of target

areas for both near-surface variables exist, again, behind the de-

veloping convection in northwesternMississippi (e.g., Figs. 18c,f),

FIG. 13. As in Fig. 12, but for the 30 Apr case.
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with few areas identified in the preconvective environment across

Alabama and Georgia (e.g., Figs. 18a,b,d,e). ESA-identified

regions to target 850-hPa temperature observations again are

anchored to the developing convection (Figs. 18g–i), translat-

ing with the storms in centralMississippi at 1800UTC (Fig. 18i)

to northwest Alabama by 0000 UTC (not shown). Noisy

850-hPa temperature target regions exist out ahead of the

convection in central and southern Alabama as well (Figs. 18h,i),

which originate over the warm waters of the Gulf of Mexico

(not shown).

Even fewer near-surface observation targeting regions exist

for 14 March across Alabama, Tennessee, and the StesoNet

VORTEX-SE domain (Fig. 19) compared to the other IOPs.

The 2-m temperature and dewpoint target areas at 1400 and

1600 UTC (Figs. 19a,b,d,e) in western Mississippi exist primarily

along and behind the developing convective line. Preconvective

target regions develop by 1800 UTC (Figs. 19c,f) west and

southwest of the StesoNet domain. Later in the forecast, 2-m

temperature targets are enhanced across the entire response

region, while relatively no target areas are defined for 2-m

dewpoint temperature (not shown). Aloft, ESA identifies ribbons

of targeting regions for 850-hPa temperature across Arkansas

over a number of forecast hours (Figs. 19g–i). A number of

localized targeting regions for 850-hPa temperature appear

tied to individual storms across Alabama (Figs. 19h,i), which

suggests sampling thermodynamics aloft to improveUH forecasts

would be particularly difficult. Similarly small target areas exist in

southern Mississippi and eastern Arkansas (Fig. 19i), and a

different region develops in northeastern Alabama concurrent

with the response time at 2100 UTC (not shown).

5. Summary and discussion

Four IOPs from the VORTEX-SE 2017 and Meso18–19 field

campaigns were selected to evaluate the impact of near-surface

observations on convection forecasts. Texas Tech University de-

ployed StickNet platforms in a stationary, mesoscale network

across northern Alabama and southern Tennessee, sampling

temperature, humidity, and pressure at 10-Hz frequency dur-

ing each IOP (i.e., the StesoNet). Observations across 16 and

24 stations in 2017 and Meso18–19, respectively, are retro-

spectively assimilated with the experimental HRRRE at hourly

FIG. 14. As in Fig. 12, but for the 23 Feb case.
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frequency, with forecasts initialized from these analyses and

compared against forecasts with no StesoNet data assimilation.

Across nearly all analysis times and IOPs, StesoNet obser-

vations reduce analysis errors of 2-m temperature and dew-

point across the domain, with error reductions generally less

than 0.25K. A number of the analysis RMSE reductions are

statistically significant despite their small magnitudes. Spatially,

the StesoNet observations are routinely adjusting ensemble

analyses around the StesoNet domain in early data assimilation

cycles. Generally, these mesoscale adjustments are positive, in

that absolute errors are also reduced. However, small-scale

errors are present even within some of the mesoscale envi-

ronmental adjustments. In a number of IOPs, these localized

areas of improved errors remain stationary, indicating the

propensity for the HRRRE system to be routinely biased and

the StesoNet data are consistently trying to correct these bia-

ses. In other cases, the error improvements propagate down-

stream with later analyses, and subsequently impact other

portions of the domain. EXP forecasts of temperature and

dewpoint are improved in some instances, and degraded in

others. The 22 April case saw the most consistent forecast

improvements, while the 23 February case exhibited forecast

degradations that were statistically significant.

When evaluating UH forecasts, EXP simulations do not

consistently shift ensemble forecast probabilities where severe

hazards were observed; the collocation of increased probabil-

ities with storm reports at some forecast hours is replaced

by increased probabilities in areas where no reports existed

in following hours. In many instances, EXP forecasts reduce

probabilities of UH in areas where severe reports were recorded.

UH probability changes are tied to reflectivity objects, which

are highly sensitive to changing initial conditions induced by

new observations. Furthermore, forecast probability distribu-

tions of UH are more sensitive to initialization time than the

assimilation of StesoNet observations, with the most drastic

changes in forecast distributions arising from extra assimila-

tion cycles and additional conventional observations. However,

StesoNet assimilation always had a positive impact on forecast

skill (i.e., reducing Brier scores) regardless of initialization

time. It should be noted as well that despite the largest changes

in forecast distributions coming from different initializations,

later-initialized forecasts did not necessarily always have

FIG. 15. As in Fig. 12, but for the 14 Mar case.
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improved UH forecasts. The 23 February and 14 March cases

featured poorer forecasts from 1800 UTC initialized forecasts,

as higher probabilities were issued by the forecast systems in

areas of no reports. In general, StesoNet observations are able

to improve the mesoscale environment preceeding and during

deep convection, but these improvements do not translate to

storm-anchored UH probabilities.

Ensemble sensitivity analysis–based observation targeting

methods applied to the CTRL ensemble forecasts initialized at

1200UTC reveal that targeting regions of 2-m temperature and

dewpoint across the StesoNet domain are infrequent and short

lived. At most, target regions propagate through the StesoNet

domain in less than three hours for these cases.Weak impact of

StesoNet observations on forecast UH distributions may be

FIG. 16. Expected ensemble variance reduction (i.e., ESA targets) of UH response (m4 s24; color shading) due to hypothetical

assimilation of (a)–(c) 2-m temperature, (d)–(f) 2-m dewpoint temperature, and (g)–(i) 850-hPa temperature at (left) 1400; (center)

1600; and (right) 1800 UTC 22 Apr 2017 calculated from the 1200 UTC initialized CTRL ensemble forecast. Gray shading is

the ensemble probability matched mean composite reflectivity greater than 40 dBZ. The green contour delineates the UH

response region valid at 2200 UTC. Black dots denote geographical areas where the ensemble sensitivity passes a statistical sig-

nificance test demonstrating the regression slope between initial condition and response variables is greater than zero with

95% confidence.
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partially explained by ESA-identified target regions that were

infrequent over the StesoNet domain. Generally, there was a

lack of ESA-identified targeting regions in the preconvective

environment, and when preconvective target areas were iden-

tified, they rarely occurred across the StesoNet domain.

Furthermore, the strongest signal of near-surface target areas

occurred behind the convection, dynamically tied to the cold

pools being produced by the convection. ESA was also applied

to evaluate targeting regions aloft for 850-hPa temperature,

which identified spatially and temporally coherent regions di-

rectly tied to the developing convection. These results indicate

that near-surface sampling may not have been the most im-

portant facet of the environment to improve the convection

forecasts, and sampling the environment aloft may have

yielded additional forecast improvements. Additionally, the

assimilation of conventional observations in later assimilation

cycles was likely sufficient to improve forecasts since these

observations sampled sensitive regions.

The inconsistent storm-scale improvements in both near-

surface environmental fields as well as storm-centric UH

forecasts could likely be addressed by considering improve-

ments to the data assimilation configuration. Planned future

FIG. 17. As in Fig. 16, but for the 30 Apr case. The response is valid at 1900 UTC and ESA-based targets are valid at (a),(c),(g) 1300;

(b),(e),(h) 1500; and (c),(f),(i) 1700 UTC.
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work will investigate to what extent additional StesoNet ob-

servations assimilated per cycle (e.g., 10 observations over the

assimilation window) could enhance storm-scale forecasts as

well as the impact of subhourly data assimilation. Alternative

UH-forecast verification methods should also be explored,

since it is difficult to accurately project hourly forecast skill

with limited LSRs. Future efforts may benefit from utiliz-

ing subdaily or hourly practically perfect (PPER) analyses

(Gensini et al. 2020) to verify forecasts. Even though PPER

fields are similarly generated from LSRs, they provide a

probabilistic baseline to verify probabilistic forecasts, which

may be a more appropriate measure of forecast skill com-

pared to Brier scores.

Through the analysis of these four IOPs, it is evident that a

mesoscale, portable array of near-surface sampling has the

potential to impact and improve convection forecasts within

the Southeast United States. However, even though there were

reductions in near-surface analysis and forecast errors due to

assimilating StesoNet observations, it is plausible that the near-

surface environment was not the most sensitive area for these

particular cases. The evolution of the planetary boundary layer

(PBL), including the transportation of heat, moisture, and

FIG. 18. As in Fig. 16, but for the 23 Feb case. The response is valid at 0100UTC 24 Feb 2019 and ESA-based targets are valid at (a),(c),(g)

1400; (b),(e),(h) 1600; and (c),(f),(i) 1800 UTC.
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momentum, is a critical factor in the development and in-

tensification of convection, and it is often insufficiently

modeled due to the small-scale processes inherent within

(e.g., Cohen et al. 2015). It makes sense that in situ obser-

vations above the surface and within the PBL, where the

regular observing network is particularly lacking, would

provide substantial benefit to convection forecasts within

this geographical region. Additionally, these simulations

do not fully determine the value of StesoNet observations

for Southeast United States convection events. StesoNet

observations were used for IOP declarations and were supplied

to local National Weather Service forecast offices for now-

casting and warning decisions. Furthermore, a larger set of

convective events and forecast cases would allow for a more

robust assessment of forecast reliability and resolution,

which can only be gleaned from a sufficiently large set of

forecasts. Continued deployment of portable mesoscale networks

in future VORTEX-SE field campaigns [e.g., the Propagation,

Evolution, and Rotation in Linear Systems (PERiLS) project]

will allow for a more exhaustive evaluation of the utility of

such a network in the Southeast as well as other areas of the

country.

FIG. 19. As in Fig. 16, but for the 14 Mar case. The response is valid at 2100 UTC and ESA-based targets are valid at (a),(c),(g) 1400;

(b),(e),(h) 1600; and (c),(f),(i) 1800 UTC.
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